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I
g BRIEF OUTLINE OF RESEARCH FINDINGS

I This investigation has resulted in the development of a set

of generalized equations for calculating the input impedance

Ito a microstrip patch antenna over a thick substrate.

I The primary application of this theory is for millimeter

wavelength microstrip antennas where the substrate can be

electrically thick and requires consideration of the d'sper-

sion effects of the dielectric.

The results of the investigation are compared to the cavity

or modal theory for the input impedance to a thin substrate

and to experimentally determined input impedances. Excellent

agreement is found for these geometrics.
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performed as a joint effort between the Electromagnetics Research Group at the

Physical Science Laboratory, New Mexico State University and the Electromagnetics

Laboratory at the Department of Electrical Engineering, University of Colorado,

Boulder. The effort was led by Dr. Venkataraman, a PSL Post-Doctoral Intern,

who was in residence at the Department of Electrical Engineering, University

of Colorado during the theoretical development phase. The Physical Science

Laboratory wishes to express its appreciation to the Department of Electrical

Engineering, University of Colorado, and to Dr. David Chang in particular for

very significant contributions to this project.
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1.0 INTRODUCTION

This report presents an improved theory for the analysis of input impedance of

a probe-fed microstrip patch antenna. The motivation of this work arises from

the need for a more accurate determination of the characteristics of millimeter

microstrip antennas than obtainable from currently available cavity and trans-

mission line models. A complete spectrum representation of a probe excited micro-

strip antenna has been developed based on the work of Chang and his colleagues

[1,3], where the cavity wall reflection coefficient has been obtained as a func-

jtion of the angle of incidence of interior waves bouncing between the walls.

The first mathematical model of the basic microstrip radiator used a one-dimen-

sional transmission line analogy [4,51 and were later extended to two dimensions

by the cavity model [6-8]. However, neither of these theories account for the

dispersion effects caused by the grounded dielectric slab. Of particular interest

here is the background work of the modal field expansion theory [6]. This theory

is based on the conventional Fourier series expansion of the fields inside the

cavity formed by the microstrip patch and its associated ground plane. In its

present form it assumes a thin cavity so that the interior fields are composed

of discrete modes which may be calculated assuming a fixed angularly independent

wall reflection coefficient. The effect of radiation is represented in terms of

an increased substrate loss tangent as done by Lo et.al. [6] or by the method of

impedance boundary condition at the wall by Carver et. al. [8]. When the electrical

thickness of the cavity ranges from 0.02 to 0.2 as in the case of practical micro-

strip antennas in the L, S or C band regions, the surface waves supported by the

dielectric substrate carry relatively little power and the assumption of a per-

fect magnetic wall and an angularly independent reflection coefficient for any

given patch geometry and frequency of operation is fairly reasonable.

By contrast, microstrip patch antennas constructed with commercially available

substrate thicknesses and operated at the X-band or higher frequencies may have

an electrical thickness equal to and exceeding 0.5. Experimental results

obtained with the X-band patch antennas [9] show that the cavity theory breaks

down as the substrate becomes electrically thicker since an appreciable amount

of input power is transferred to surface waves on the open grounded substrate.

4



I
This inadequacy of the cavity theory underscores the need for a better

theoretical description of millimeter wave microstrip 3ntennas.

The analysis of the microstrip patch antenna by Change, Chang and Kuester

[1,21 is based on the recognition that the natural modes of the antenna are

established on transverse resonance conditions which incorporate the angularly

dependent reflection coefficient associated with the cavity walls. This

angular dependence is a direct result of the surface waves and radiation sup-

ported by the grounded dielectric substrate. The Wiener-Hoff technique has

been used to find the reflection coefficient and the analyses has been used

to compute the optimum range of patch side length aspect ratios in the sense

of low Q or greatest bandwidth.

The present theory considers the complete spectrum of plane waves propagating

from the excitation probe at all angles. The natural modes are established on

the same transverse resonance condition obtained by Chang which incorporates

the angularly dependent reflection co-efficient associated with the patch

boundaries. The reactive part of the probe impedance for a truncated rectan-

gular patch is due to the evanescent waves which are usually confined to the

vicinity of the probe. Those directed at specific angles interfere construc-

tively and propagate down the strip without decay. These are the guiding

modes and the corresponding edges of the patch act as the non-radiating walls.

Some of the spectrum propagation will leak out at the edges of the patch in

the form of radiation.

This report presents the theoretical analysis of input impedance to probe fed

microstrip patch antennas. Expressions have been obtained as a function of

patch size, probe location and size and frequency of operation.

2



2.0 INFINITELY EXTENDING MICROSTRIP PATCH ANTENNA

2.1 Geometry of the Problem

The analysis has been broken into two phases. In the first phase, the micro-

strip patch antenna has been considered as infinitely extending in the x

direction as shown in Figure 1. The width of the patch is k in the y direction.

It is excited by a L-directed probe located at (xo , yo). The patch is located

on the surface of a grounded dielectric slab of thickness d and relative

permittivity E . This then allows us to view the structure as an infinitelyr

extending waveguide and helps us to establish all waves both propagating and

evanescent which emanate from the exciting probe at different angles.

The evanescent waves directed at different angles would decay very quickly

within a small distance from the probe and would account for the reactive part

of the input impedance (Figure 2a). Some of these waves may reach out to the

walls in the x direction where they could partially leak out as spurious radia-

tion and also be partially reflected in the y direction.

The propagating modes bounce back and forth in the y direction (Figure 2b),

either interfering constructively or destructively. Only those directed at

specific angles interfere constructively and propagate down the patch as

guiding modes. They ultimately characterize the resonant properties of the

patch. The others which interfere destructively liak out as spurious radia-

tion in the y direction as the waves progress along the x direction.

Hence an analysis of an infinite patch would help establish the transverse

resonance condition for the guided modes and the entire spectrum of plane

waves emanating from the source. In the second phase of the analysis, we

consider a truncated patch which results in waves bouncing in tile x direction.

The input impedance of such a finite patch can then be calculated from the

electric field.

2.2 Field Under the Infinite Microstrip Patch

We first assume the electric current density due to the filamentary exciting

probe source is of the form

3
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=I z 6(x - x0 ) 6(y -yo) (1)

I The primary z-directed electric field emanating from the probe then satisfies

the wave equation( + d 2 + k2n2) E -iu I 6(x - xo)6(y - y) (2)

I where n2 = P rCr and k2 = W2 10CO  and where the assumed but suppressed

time variation is exp (-iwt). It is well-known that the solution of eq. (2)

J can be represented by a spectrum of plane waves of the general form:

IE = k T da eik(x>o<) E ( y ' ) (3)

j A specific solution of eq. (2) is

I

Ez A feikc(x-x°)eik4n!& (Y> - Y0 <) da
i - ,?ei (4)

=max =max(,

where y min (y ' Yo and x > mn (x, xo)

= constant

0 4(5)

Eq. (4) represents an angular spectrum of plane waves, or primary waves from

the probe. The exponential term in the integral (4) can be written for prop-

agating (non-evanescent) waves as

iknr ik[(x - xo) + V 2 2

e e >n - x (y> yo<)

I
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I where r is the radial distance from the probe and a = n cos 0 with the angle

defined as shown in Figure 26. However, a is in general complex since

I evanescent waves are also possible.

IReflection occurs as these primary waves are incident on the two edges of a
microstrip of finite width. For an infinitely long patch the waves travelling

in the x direction while bouncing in the y direction would be the sum of inci-

dent waves, those which travel in the positive y direction and those which

travel in the negative y direction. Hence we can write

E = A f e k 0(x Xo)eik ! -i (Y-yo) + A eik4n ! i- (2/2 -y)Ez 0o_0

+ B ei k/ ! -  y+ 1 da
(6)

The amplitude A of waves reflected from the edge at y = 2/2 can be determined

by the boundary condition imposed at the edge:

A = [ikn "o + B eik4 lf k/2] e( ) ei a 2/2

(7)

where F(a) is the complex reflection coefficient obtained in [2]. Similarly,

the amplitude B is given by the edge condition at y = -2/2 as

I

SB [e i kn- Yo + A e ik~nT~Z 2 /2] (a) e ikVnZ - a z e/2 (8)

1 7
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Solving for A and B, the sum of the second and third terms in eq. (6) would

be given as follows

Ae' ik1n Z (9/2 - y) + Be A4ln-2 (y + 9/2)

I lr2()e i2 k-T--7 k

I+ r(me ik4 iiz a9 e ik~z 0) y+ eik~inzo Y likVn- i yo

I+ r(ca)e i k47 U e -i k477 y oil (9)

1 _ ~a~iklaQ Cskl -+ a (y+y))+ r(ci) eikf cos(k4W&7a Y0))]

(10)

where

A -1 -
2(ci) ei2k4 nz---u 2v (

Substituting in eq. (6) we have

E z=A Of dc ,e ok~- 0 e iko7-a- yy0

+2rA) e ikVPi-t'2 ( o (ay+)) +F(a) ek 2 2 t

x Cos (kjT7Ow-(Y-y 0) } (12)

8



2.3 Angularly Dependent Reflection Coefficient

As mentioned earlier, F() is the complex reflection coefficient of the

plane waves bouncing in the y direction. When the plane waves from the

Iexciting probe proceed in the y direction at different angles, whether
these waves radiate into open space or not depends on the angle of incidence.

A complete reflection is possible if the angle of incidence 0 = sin - 1 (a/n)

where n is the refractive index, is greater than some critical angle. Beyond

this critical angle the reflection coefficient has a magnitude of unity.

The reflection coefficient was obtained by Chang and Kuester [2] using the

Weiner-Hopf technique as applied to coupled integral equations for charge

and longitudinal distributions on the patch. An analytical expression obtained

by them [3] for thin slabs is given by

I -ix(a)

wh e = e (13)

where

! 0)2tn n U2tn() - / (14a)
A kda nA'- d 1b

r =2

+ 2 Q - 2 Qo( )1

2r /n k-
f Qo(-72) - n() 2T'kd) + y

+ 2Q (-6 n(2T) (14c)

I



II

When c-n, A is very small and

x(a) 2kd [ (l-t 2 )r { tn(Vi2-c1kd)+ y-l}

+ n2 t2Qo(-6c) -£n(2r)}

-r 22Q( 6 n(2,)] (14d)

6C r- r U. . Qo (Z) mizmgn(m) (15)

I r + i r +  0 M!

and Y = Euler's constant 0.5772. Equation (14) is valid for kd < 1 as is

found in many practical cases. For thicker slabs, one can employ the integral

representation given in [2] directly.

2.4 Physical Interpretation and Analysis of The Field Expression

The transverse resonance condition for a conducting strip of finite width X

occurs when the total phase change for the TEM wave bouncing back and forth

between the two ends of the strip -2X(c) + 2kv- -- z is equal to an integer

multiple of 2f; that is,

-2X(a) + 2 k24 Z = -2pn (16a)

The first term is the phase accumulation resulting from the complete reflection

of this wave from the two edges and the second term is the phase change across

the transverse y dimension for the zig-zagging wave.

The particular values of c = a , p = 1, 1, 2,... that produce this resonance

correspond to the modes on a microstrip structure. These can be determined by

a numerical root finding scheme. However, the graphical representation of

eq. 16a by Chang [11 helps depict the propagating and evanescent modes.

10



The report (1's figure number 4 is repeated here as Figure 3 for convenier.:e.

Equation (16a) is rewritten as F (k;a)
p

F (k;a) ; F (k;a) = p_+(_

P -  
(16b)

Figure 3 shows the function F (ka) for p 0, 1, 2.... as a function of aP
for a dielectric slab of premittivity e = 10c and thickness d of 1.27 mm and

0
desired resonant frequency 8GHz. c = c(p) is then given by intersecting kk

with the set of curves F (k,a). Only a finite number of roots appear on thep
real a axis. In this case for p = 0, 1, 2 we have a = 3.05, 2.95, 1.075. The

rest appear as a continuous mode spectrum of the evanescent modes. In contrast,

for the case of perfect magnetic walls (perfect cavity - no radiation), there

are not only a fininte number on the real axis corresponding to propagating

modes but also eq. (16b) gives an infinite set of discrete roots on the

imaginary a axis corresponding to discrete evanescent modes which represent

the reactive part of the probe impedance.

i.
I

[ 11
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F ci 10

d = 1.27mm
3.0

f =8 G~z

kP.

2.0

p-2U

I~

Figure 3. Graphical Method for determining the
propagating modes. (After Chang, D.C. [1)).
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In addition, for the leaky radiating cavity the function x(a) has branch points

at a = ±1 and the path of integration is deformed upwards (for x > x ) as
0

shown in Figure 4a. The integration path then wraps around the branch cut as

shown in Figure 4b. The infinite integral in eq. (12), would reduce to the sum

of the branch cut integration and the sum of the residues at the poles on the

real axis.

Equation (12) can be written as follows

[.fof(a) d 1 
Ez o Lz0 d d

+ 27ii A 0 (residues at the poles on the real axis) (17)

p

where

f(t() r 2 i X Z - /

+I - ___el ~ cos k. ~ (Y'Yo)J(8
A1 20 (18)

and

F(), A(a) are calculated for ./YT = -i4P

r2 (a), A2(a) are calculated for 4 = +i4j-ci7 (19)

The poles of the equation are defined by eq. (16b). If a = a defines the
p

location of pole of order p=O, the residue at this pole is given as follows

S0 c iklx-X (k 1 /-0 Y) cos(k/n- 2a-" Yo)] (20)
(Ri'o'- X'(a) + k~a) 

a a p

13



Here the width X of the patch is chosen such that only the dominant TM
01

mode propagates.

In eq. (20),

X'(01) = 2kd Pr(Y-1) + 2n2Q(_6 ) (nz -a

-p(yi-1) + 2Q (6 ) - 2n(2n)} f2a + or*

+ n f 
z) 

+ }

" Pr 2a2n(4r-tlkd) + "3 + (n -7Tk) (21)

The physical interpretation of the poles and branch cuts is as follows. The

poles on the real axis correspond to the propagating modes which define the

resonance for the patch. For a wide patch there may be more than one such

guiding mode. In the case of perfect magnetic walls a series of poles occur

on the imaginary axis. These correspond to the discrete evanescent modes -1

the cavity which add up to give the reactive part of the probe impedance

(see Figure 5a). However, for the case of leaky magnetic walls when the re-

flection coefficient is no longer unity and is now given by eq. (14), the

evanescent modes appear as the continuous mode spectrum in the form of the

branch cut integration from i- to o (see Figure 5b). If r = I in this region,

then the discrete evanescent modes predicted by the cavity model can be obtained.

When X i 0, a is obtained from
p

/ n2 + a2  - X(ia) p (22)

p p

and when X = 0, that is r = 1, a / is obtained from
P

1 n2 + C'2 =pIT (23)
P

14
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It can be shown analytically that for d/k << 1 the difference in the

above two cases is immaterial for integration along the imaginary axis

and we can then put r = 1 in this region.

Further, the modes which are guided down the patch leak out as spurious

radiation at each bounce in the x direction. This radiation is represented

by the branch cut integration from 0 to 1. The integrand f(c) given in

eq. (18) is purely reactive. It can be shown analytically that this spurious

radiation is of the order of kd which can be ignored since the resonant

term is of the order of l/kd at resonance.

Hence the field under the infinite microstrip patch antenna reduces to the

residue at the pole corresponding to the propagating mode p=O and the sums

of the residues at the poles on the imaginary axis corresponding to the

evanescent modes p = 1,2,...

ikd Ix-xl
E = 4A cos(k n2 - nz Y)cos(k-n_ 2 Y")e 0 (24)

z o (/n 2  _ a2 a~d a kP) = 0 =

(/T~7WX(d) + k~ci)

2 TAo ika[x-xoi 2-
+ E e Cos( -(Y + Yo) ) + (-l)Pcos(p (Y - Yo))

k Z p=l C1

a n 2 2

3.0 TRUNCATED MICROSTRIP PATCH ANTENNA

Having established the entire spectrum of plane waves emanating from the

exciting probe for an infinite patch, the patch can now be truncated to bounce

these guiding and evanescent modes in the x direction. The geometry of the

truncated patch is given in Figure 6. The length of the patch is h and the

probe is located at (x,, y).

j [15
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Figure 4a. Deforming the path of integration.
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Discrete

evanescent
modes
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Fig. 5a. Propagating and evanescent modes for perfect magnetic

walls.
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fig. 5b. Leaky cavity with an angularly dependent reflection

coefficient.
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Bouncing the mode in the x direction would amount to expanding the term

ika( xx )

and the waves travelling in the ±x directions, that is

I

As before the amplitudes C and D can be determined at h/2 and -h/2. In

order to account for the bounces from the two end walls of a microstrip we

need to replace exp (ikalx-X o) in eq. (19) and (20) by

eikci jx-xJ r~ ______ =or___e__
e1 l.=2(.- )ei 2 kah  OS(kc(x+x

i-r2(-n-Za )e Ic 0(26)

+ r( e k-h cos(ka(x-x)

e ikaixxo1 in eq. (25) is replaced by eq. (26) to obtain the entire field

under the truncated microstrip patch antenna.

4.0 INPUT IMPEDANCE TO PROBE-FED MICROSTRIP PATCH ANTENNAS

The electric field at the feed probe is effectively that averaged over the

area of the probe, i.e.,

<Eza f d E (x,y) x = x + acos, y = y + asin (27)
0

where a is the probe radius. Utilizing eqs. (24) and (26),

4_Ao  2r(v7n _a2 )eikah
<E > = 1 +

z (n2 - a2 X(a) + k~d l_2(n____ i2kah

Scos(2kax) +Jr( r _ j2 )e kah

+ 4IriAo  [ cos(2kaxo) + eikah 1 + i

k 2 sin(kah) +

(even) L - n(\ ?)
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I

+ i~ [t F(8 T2a2 -2a 1(28)

and the input impedance would be

-<E > d
za

in (29)

where d is the thickness of the substrate.

The above analysis has been based on a dynamic model and has not included

the possibility of a resonant TMo0 mode. The TM00 mode yields a basically

uniform charge distribution on the patch and is associatcd with the static

capacitance of the patch given by

d (30a)

This capacitive reactance has to be added to eq. (29) to give the total input

impedance for the patch.

z = -<Ez>a d jd
in weh (30b)

5.0 THE LIMITING CASE OF PERFECT MAGNETIC WALLS AS A COMPARISON

TO THE CAVITY MODEL.

The purpose of this section is to show that in the limit of perfect magnetic

walls this theory reduces to the cavity model where the field is given by the

sum of all modes in the x and y directions.

For perfect open circuit walls, for which there is no leakage outside the cavity,

I
F(a) = 1 = r(.tz 7 ) (31)
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As before, we consider an infinitely long microstrip patch and establish

all the propagating and evanescent modes. Substituting r(cL) = 1 in eq. (12).

E =EA 00e ika(x-x0 ) [e ikln2-ci (y-yo) +2e ik.1Ha 2 os(k.Ii7 a (Y+yo))I z o0 -2 -1

I+ ek c 0 cs (k~iiz.c*7 (Y -Y ))]1 dai(2

Poles occur when

2 2k4HO 2 ~ 2pnl (33)

Therefore,

E = 2U Ie iket ll 2eikl)o je lcos(k~iz t (Y+yo))+e 04 U Y
Z 0 p j-& L(\e2k/2W)i

2kk(-2a) - 1

E z ke Ikjj [ 0 1 Jcskn-i(~o) ek~~

co~.H0~ YY))] (34)

kVin--a2 =-i
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Simplifying,

2rt~o

2itAo e j ka jx-xjI ip Y0(p y -

= k2 2ae ei  ep 2 + e Y i

z L

-ipT! Y -ipnt YpEr y

+ e ( k + e i p  
(35)

a = a(p)

This can also be obtained by setting r(a) = 1 in eq. (24).

For p even

E 4nAo I ei1a 01x o s (2-n C PlT
z k p even a CO Y COS Y0) (36)

For p odd

E=4TAo I eika-or i sin (P71 Y
z kl p odd a \2, \i (Pa (37)

I'I

* These eqs. (36) and (37) give the propagating and evanescent modes as the plane

waves bounce in the y direction in an infinitely extending patch with perfect
ika -

magnetic walls. Truncating the patch and expanding e 1 0o where

r(rn 2 - 2 ) = 1

eikaIx-x01 is then replaced by

eiikakxax + (cosa(x+x0)) + e kah cos (ka(x-xo)4 (38)1 -e k4n'-ap

I.
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The sum in eq. (38) will be replaced by the function O(a).

L This function 0(a) should satisfy the following equations; the wave equation

d2 +k2 a2 =i2ik6 (x-x) (39)

and the boundary condition

0 at x =±h/2 (40)

Assuming a solution of the form

I An cos ' for n =1, 2 ... (1

which satisfies the orthogonality relation

(h/2 ()ncoQ, ' dx =constant for co h/ fAcsl (42)

-hi/2

substituting (41) into (42) we have

hA [k2 Or2 (2mn)2] 2i2ros n n xO)

and

ik[k2 a2 CSI (hl x0)
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I This gives,

i . k2a2 - (I~J (44)

I Here a satisfies the relation kln--a7£ pn

and for p even, where p = 2p'

k2 a2 = k
2n2  /2pTt2T -1 (45)

I!
g Therefore,

i4ok 2m x) f2mnx~
h m k2n2  - COS - h ) C h (46)

and, for p even

COS~j~ YO coOSpf Y)c,2tx2mn
E= il6nAo 1 1 e. h z)CS

Rh pI m [k2 n2 - P'lt ) (2nn) j47
Averaging the input field over the area of the probe we have,

Cos I' Yo Cos 2 M Xo0
<E > = i 16r~o 1 ,) h

z __ aFt 2 .2 (2r

f CosQ.m (x + a cos €)Cos(2pt (y + a sin ) d]

0o (48)

II'
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I'
For p' even, the integral in (48) becomes

ofc2s (Xo+ a cos #))cos(2P1n (y + a sin o do

00= cos 1 2m n Pfl)x s os~"co if() (49)

Cos x Cos " 2 0 os 2mn i cos(O) + £ a sin()

+ Cos - -a cos(o) - 2 a sin()]do

COS ccsh x cos fo/ a cos( o )

+ cos {4 u7 + vz a cos (- o)1j do

h -o1) Cs( e Y0)J 0 4uz~vza) (50)
-J

where

u = -; v 2p1 = sin'- (51)

Substituting eq. (50) into eq. (48),

cos2 2P' o COS2 xo
i16nAo k 2 0; h<Ez > =  I I. - h- .q7 a)':z ./2er€ z

ta 2i 2 2 W 1z)T
P' m k n - (~-2min o

(52)
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so that the input impedance is given by

S i~w~~d1  COS(jV7 Y) _OS2(Tn-XO) j(+(2j~

in =m k2 P2  (2)Z (2&T. o\ih

(53)

The modes corresponding to p' and m are the same as that obtained in the

I cavity model. The Bessel function is the converging factor similar to Cmn

in [6].I
6.0 RESULTS

The input impedance for a rectangular patch of dimension k = 6.858 cm

and h 4.14 cm mounted on a grounded dielectric of thickness d = 0.1588 cm

and er 2.5 and excited by a probe of diameter 2a = 0.132 cms has been

obtained using eqs. (29) and (30a). This is shown in Figure 7 as a function

of frequency. The resonant resistance has been compared with that obtained

by Carver and Coffey [10]. There is a 1% difference in the resonant frequencies

obtained by the two theories. This can be explained as follows.

From the form of the reflection coefficient r(c) one can define the apparent

end admittance of the microstrip structure as

Y(k,a) = Y 0 1

0 -ra)

where Y -120rd) is the characteristic admittance of the TEM wave

in a parallel-plate waveguide. It suffices to note that the end admittance

in general is a function of both frequency and angle of incidence. Never-

theless, for thin slabs, it can be approximated by the value at normal inci-

dence at the end walls x = 0 and h. Hence the concept of a constant end

admittance independent of the angle of incidence as in the cavity model has

merit in this situation provided one recognizes the dynamic nature of the

wall admittance.
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I

Now, since the magnitude of the reflected wave is very close to unity we

i can show that

G =(gY )I = v (~ . where V ng
XiI 60 kd

The real part g of the normalized admittance varies linearly with kd so that

g is now independent of the frequency. When g is plotted as a function of

kd shown in Figure 8 (repeated from [1]), v is determined by the slope of g

and is 8 x 10 . On the other hand, the conventional theory which assumes

that the end conductance can be calculated approximately from an open slot

Iradiation in the absence of the substrate gives a slope of 8.33 X 10 The

error in omitting the surface wave radiation is typically of the order given

by (1 - e-1)kd and is not significant when the substrate is thin.I r

As for the end susceptance of a microstrip of width Z, we can first define

an equivalent length At of an open circuit according to

B = (bYo)X = E re At where t ( b ) I
0 ro d nkdid

which is also plotted in Figure 8. Unlike the quasi-static theory which

gives a result independent of frequency, the dynamic nature of our result

is very explicit. Experimental results by Johnk and Chang [1] show that

the Wiener-Hopf theory properly incorporates the high frequency effects

into the modeling of the open end susceptance whereas the static approach

is inadequate. An especially encouraging result of this is the fact that

the incorporation of the angle of incidence in the Wiener-Hopf reflection

Icoefficient produces a susceptance that is in excellent agreement with the
experimental results.I
In view of the above discussion it is obvious that the discrepancy between

the two results shown in Figure 7 arises due to the difference the wall

susceptance used by the two theoretical models. Further, the dynamic nature

of the wall susceptance makes the present theory more appropriate for

millimeter wavelength antennas.
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17
Figures 9 and 10 show the resonant resistance and reactance for the dominant

mode as the substrate thickness varies. As expected the resonant frequency

shifts and the beamwidth increases with increasing electrical thickness.

I.
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Figure 7. Input Impedance to Patch vs. Frequency.
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Figure 9. Resonant resistance vs. frequency.
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Figure 10. Resonant reactance vs. frequency.
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7.0 CONCLUSION

This report has presented a general theory for the analysis of the input

impedance to a probe-fed microstrip patch antenna where the entire spectrum

of plane waves emanating from the exciting probe has been considered and

an angularly dependent wall reflection coefficient has been incorporated.

The primary emphasis to its application is for the case of millimeter antennas

where the substrate is electrically thick and makes it necessary to include

the dispersion effects of the dielectric.

It is seen here that there are two kinds of waves which originate from the

probe; those which are evanescent and decay in the vicinity of the probe

therefore constituting the reactive part of the impedance and those which

propagate down the patch and are the guiding modes. The guiding modes are

discrete and finite in number tor a given patch size and desired frequency

of operations whereas the evanescent modes form a continuous spectrum.

Further, the magnitude of the spurios radiation which leaks out of the

cavity as the entire spectrum of plane waves bounce back and forth has been

analytically estimated to be of the order of kd. The continuous spectrum of

evanescent modes for the thick substrate or leaky walls is in contrast to the

case of the perfect magnetic walls for which it can be shown analytically and

confirmed by preliminary numerical analysis that the evanescent modes, like

the propagating modes, are discrete. Hence the total field reduces to merely

calculating the residues at the poles corresponding to all the modes since

there is no (by assumption) radiation from the cavity. Although this assump-

tion of discrete modes is also reasonable for substrates which are electrically

thin, the radiation has to be accounted for in substrates which are electrically

thick as in the case of millimeter wave microstrip antennas. Analytically it

is shown that for the limiting case of perfect magnetic walls this general

theory reduces to a form similar to that obtained in the cavity model. In order

to do this, the single summation in eqs. (34) and (35), which includes the

entire spectrum, was made to take the form of the familiar double summation which

appears in the cavity model analysis. It should therefore be emphasized that

establishing the mode spectrum for an infinitely long patch and then bouncing

these modes for the truncated patch not only gives all the modes in both

directions under the patch but also makes the numerical and mathematical analysis

simpler.
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